New methods of time series analysis of non-stationary EEG data: eigenstructure decompositions of time varying autoregressions.
نویسندگان
چکیده
OBJECTIVE Those who analyze EEG data require quantitative techniques that can be validly applied to time series exhibiting ranges of non-stationary behavior. Our objective is to introduce a new analysis technique based on formal non-stationary time series models. This novel method provides a decomposition of the time series into a set of 'latent' components with time-varying frequency content. The identification of these components can lead to practical insights and quantitative comparisons of changes in frequency structure over time in EEG time series. METHODS The technique begins with the development of time-varying autoregressive models of the EEG time series. Such models have been previously used in EEG analysis but we extend their utility by the introduction of eigenstructure decomposition methods. We review the basis and implementation of this method and report on the analysis of two channel EEG data recorded during 3 generalized tonic-clonic seizures induced in an individual as part of a course of electroconvulsive therapy for major depression. RESULTS This technique identified EEG patterns consistent with prior reports. In addition, it quantified a decrease in dominant frequency content over the seizures and suggested for the first time that this decrease is continuous across the end of the seizures. The analysis also suggested that the seizure EEG may be best modeled by the combination of multiple processes, whereas post-ictally there appears to be one dominant process. There was also preliminary evidence that these features may differ as a function of ECT therapeutic effectiveness. CONCLUSIONS Eigenanalysis of time-varying autoregressive models has promise for improving the analysis of EEG time series.
منابع مشابه
Exploratory Modelling of Multiple Non-stationary Time Series: Latent Process Structure and Decompositions the Eeg Data and Context Arose from Discussions with Dr
We describe and illustrate Bayesian approaches to modelling and analysis of multiple non-stationary time series. This begins with uni-variate models for collections of related time series assumedly driven by underlying but unobservable processes, referred to as dynamic latent factor processes. We focus on models in which the factor processes, and hence the observed time series, are modelled by ...
متن کاملExploratory Modelling of Multiple Non-Stationary Time Series: Latent Process Structure and Decompositions
We describe and illustrate Bayesian approaches to modelling and analysis of multiple non-stationary time series. This begins with univariate models for collections of related time series assumedly driven by underlying but unobservable processes, referred to as dynamic latent factor processes. We focus on models in which the factor processes, and hence the observed time series, are modelled by t...
متن کاملSome New Methods for Prediction of Time Series by Wavelets
Extended Abstract. Forecasting is one of the most important purposes of time series analysis. For many years, classical methods were used for this aim. But these methods do not give good performance results for real time series due to non-linearity and non-stationarity of these data sets. On one hand, most of real world time series data display a time-varying second order structure. On th...
متن کاملA new adaptive exponential smoothing method for non-stationary time series with level shifts
Simple exponential smoothing (SES) methods are the most commonly used methods in forecasting and time series analysis. However, they are generally insensitive to non-stationary structural events such as level shifts, ramp shifts, and spikes or impulses. Similar to that of outliers in stationary time series, these non-stationary events will lead to increased level of errors in the forecasting pr...
متن کاملAn Improved Automatic EEG Signal Segmentation Method based on Generalized Likelihood Ratio
It is often needed to label electroencephalogram (EEG) signals by segments of similar characteristics that are particularly meaningful to clinicians and for assessment by neurophysiologists. Within each segment, the signals are considered statistically stationary, usually with similar characteristics such as amplitude and/or frequency. In order to detect the segments boundaries of a signal, we ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Clinical neurophysiology : official journal of the International Federation of Clinical Neurophysiology
دوره 110 12 شماره
صفحات -
تاریخ انتشار 1999